Company Profile

intecs, founded in 1974, is an Italian private Company at the forefront in the design and implementation of high-tech electronic systems for the Aerospace, Defence, Transportation and Telecommunication markets, where safety, reliability, innovation and quality are the key ingredients for success.

intecs designs and develops applications, tools and software components for complex electronic systems in cooperation with major European and Italian Industries, Organizations, Universities and Research Centers.

Our core competencies include:
- System engineering
- Surveillance and Command & Control systems
- Dependable and safety-critical systems
- Operating Systems, drivers, middleware and communication software
- Human Computer Interfaces
- Simulators and Automated Test Equipment
- Earth Observation systems and Geographical Information Systems
- Software Engineering and Software Quality
- Process and RAMS coaching

We share with our customers highly valuable knowledge capitalized by our Centers of Excellence:
- Embedded Real Time Systems
- Verification and Validation
- Model Based Engineering

In 1994 **intecs** was one of the first software companies in Italy to be awarded the ISO-9001 certification. **intecs** is a CMM and CMMI level 3 company for Railways, ATC and Defence divisions.

Development of safety-related software for railway signalling applications

Since 1997 **intecs** has developed “fail-safe” software for railway signalling applications conforming to the applicable standards (CENELEC EN 50128).

In the following some examples are listed:
- Design, development, and test of the core software used on a standard platform based on the Motorola MC68xxx processor and utilised for realising onboard and ground-based signalling equipments.
- Design, development, and test of the Euroradio stack. The Euroradio communication stack enables communication between onboard and ground devices within the European Rail Traffic Management System (ERTMS). The communication stack is structured according to the ISO/OSI standard.
- Design, development, and test of the application software and MMI/DMI (man-machine interface) subsystem specification mounted onboard rolling stock.

intecs is involved in the development of a number of support tools for the design and generation of the telegrams of bit sequences utilised by railway signalling equipments (SCMT, SSC, ERTMS). Furthermore, **intecs** design and develop simulators for railway systems for test and system integration activities.

The languages most commonly used are: **ANSI C, C++, C#**, Assembler, ADA 83, ADA 95.

Reverse Engineering Sw

Railway systems developed for use in safety-related applications must demonstrate that the development process has been followed is conformant to the applicable standards (i.e.CENELEC).

For this purpose it is often necessary to carry out reverse engineering activities in order to reconstruct, from the written code (produced according the standard), the documented required by the standards (e.g. architectural design, detailed design, software requirements, etc.) **intecs** possesses the tools and capabilities for carrying out such activities.

Currently **intecs** operates on the **ANSI C, C++, C#** and assembler languages and uses suitable Sw tools for management of requirements for the compilation of architectures documents. Unless otherwise specified by the client, the V-lifecycle is adopted.

The documents produced are strictly conformant to the CENELEC standards relative to the applicable SIL (Safety Integrity Level).

Software Verification, Hardware/Software Integration and Testing

intecs carries out activities in software testing and verification as well as hardware integration testing on systems utilised in railway signalling, in conformance with the CENELEC EN 50128 and EN 50129 standards. The purpose is to verify for the required Safety Integrity Level, through tests, that the software of a particular phase has been developed in a correct manner and consistently with the input requirements for that phase. Furthermore, it must be demonstrated that the software and hardware interact correctly in order to implement their functionality.

To this purpose, the Software Verification Plan and Software Test Plan are produced. After each verification, a Verification Report is produced, which states whether the software has passed the tests. The verification is carried out by a team that is independent.
from the developers to the extent required by the Safety Integrity Level.

The types of tests that intecsc carries out are:

- **Module/Unit tests**, used to verify the detailed design requirements. These tests are executed both on the host computer and on the target computer;

- **Software integration tests**, used to verify the software architecture requirements. These tests are prepared on the host computer and executed on the target. Black box and equivalence-class approaches are employed.

- **Hardware/software integration tests**, used to verify the architectural requirements that describe the interaction of the software with the underlying hardware. Black box, equivalence-class, and manual inspection approaches are used.

For the execution of these tests intecsc uses (i) Cantata (IPL) for module tests and (ii) custom-built tools for integration testing.

For hardware/software integration testing intecsc prepares the Hardware/Software Integration Test Plan and the Hardware/Software Integration Test Report. All executed tests are traced to the applicable requirements.

intecsc carries out activities in software validation on systems utilised in railway signalling, in conformance with the CENELEC standards. The purpose is to analyse an test the hardware/software system to verify its conformance with the software requirements specification, with particular reference to the functional requirements and the safety requirements related to the applicable Safety Integrity Level.

For this activity, intecsc prepares the Software Validation Plan and the Software Validation Report. The activity is carried out through the use of simulators provided by the client or developed by intecsc. The simulator permits the simulation of a real environment which is generally hostile or difficult to access.

All executed tests are traced back to the software requirements.

All tests are also repeatable in the real system execution environment.

The software validation is carried out by a team that is independent from the developers to the extent required by the Safety Integrity Level. In particular, for Safety Integrity Level 4, the validator and the verifier may not respond to the same superior.

intecsc, with its Verification and Validation structure, is able to guarantee the independence of the two above-described roles.

System RAMS activity (Reliability, Availability, Maintainability, Safety)

intecsc performs this activity in conformance with the CENELEC 50126 standard relative to the lifecycle and RAMS (Reliability, Availability, Maintainability and Safety). intecsc is able to carry out the following:

System level safety analyses:
- Preliminary Hazard Analysis using HAZOP (HAZard and Operability study) techniques;
- Hazard Analysis by FMECA (Failure Mode Effect and Criticality Analysis) and FTA (Fault Tree Analysis) techniques;

Definition of RAM requirements with parameter calculations (i.e. MTBF, etc.):
- Verification and validation at system level;
- Production of documentation conformant to CENELEC standards;
- Verification of documentation;
- Production of Validation Report and Safety Case.

System & Software Safety Assessment

intecsc performs activities of assessment of safety-related software development for railway signalling applications. The purpose of the assessment is to demonstrate that the system is suitable to the applicable safety standards for the design and construction of railway equipments. Both the aspects related to the production of the system (generic product) and those related to the preparation of the data utilised for the installation (generic and specific application) and operation of the equipments are evaluated. Organisational aspects as well as those aspects related to quality and safety management are likewise evaluated.

Specific attention is dedicated to verification and validation activities generally complemented by a testing session on the supplier’s premises, in the presence of the assessor. The activities are carried out through auditing and checklist techniques. The reference standards are the sector-related CENELEC standards (e.g. EN 50128 for software, EN 50126 and 50129 for the system).
For this activity, **intecs** has an Attestation of Qualification of Suppliers N. QF01/05 issued by the designated authority for railway interoperability according to the European Directive 96/48/CE and 2001/16/CE, TÜV Rheinland Berlin Brandenburg.

Functional Assessment of Railway Systems

Systems used to support railway signalling originate as “generic applications” and become “specific applications” when they are configured for a specific context. These two types of applications arise out of the System Requirement Specifications that describe the relevant project application in the form of requirements.

intecs has acquired a profound knowledge of the railway signalling domain through specialised courses and training on the job. In addition, it has extensive familiarity with the new signalling systems, both Italian (SCMT, SSC) and European for the high-speed network (ERTMS/ETCS).

With these qualifications, **intecs** has carried out and continues to carry out activities for functional assessment of specific applications for various kinds of signalling.

The assessment activity is carried out by analysing the project documentation provided by the client with respect to the requirements defined in the System Requirements Specification issued both by the railway authorities (e.g. RFI SpA, Trenitalia SpA) and by the international standardisation organisations (e.g. UNISIG, UIC, etc.).

The activity is performed by means of checklists and databases for tracing the requirements back to the project documentation. During the activity non-conformances and related observations are highlighted, which are then recorded in the Functional Assessment Report.

In addition, **intecs** has carried out activities for the elaboration of system specifications (SRF, Vol 1, Vol 2, Vol 3, Vol 4) relative to SCMT, SSC and ERTMS, ground and onboard systems, with handling of additional specifications or change requests provided by the railway authorities raised during the operational phase.

Verification of SCMT Signalling Apparatus

intecs performs verification and validation activities for railway equipments that is configured with the SCMT, ERTMS signalling system. Starting from the schematic plans and the various tables provided by the client (data tables, distance tables, inclination tables, etc.), as well as the documentation provided by the railway authority (railway schematic plans, operational programs), **intecs** performs the following functional verification activities:

- Verification of the consistency and correctness of the documentation;
- Verification of the positioning rules of the balises;
- Validation of the information sent to the train;

Training Courses

For the railway sector, **intecs** is capable of providing several types of training courses, including:

- Introduction to the EN 50128 Standard;
- Introduction to the EN 50129 Standard;
- Introduction to the EN 50126 Standard;
- Principles of Software Engineering: Concepts and Tools;
- System and software Verification & Validation techniques;
- UML (Unified Modelling Language);
- C, C++, ADA language

Premises

Intecs S.p.A.
Via Umberto Forti N. 5
Loc. Montacchiello
I-56121 Pisa
Phone: +39 050 9657 411
Fax: +39 050 9657 400
Web-Site: www.intecs.it

Contacts

Enzo Bagagli
Via Umberto Forti N. 5
Loc. Montacchiello
I—56121 Pisa
Phone: +39 050 9657 411
Fax: +39 050 9657 400
Mobile: +39 347 4952283
E-mail: railways@intecs.it, enzo.bagagli@intecs.it